ECON 623: Forecasting Financial Markets

Course outline

Andrew Patton

Duke University

Spring 2020

Course synopsis

This course will introduce students to some widely-used models used to study and forecast financial markets and familiarize them with the properties of financial data. The models to be covered include autoregressive and ARMA models, GARCH models for volatility forecasting, Value-at-Risk models, and models using high frequency (intra-day) asset prices. Students will be expected to learn and apply the statistical software package MATLAB to implement the models covered in class on real data. Previous knowledge of MATLAB is not required.

Introduction to the course

This course provides an introduction to the main models and methods used in the statistical analysis of financial data, a field known as financial econometrics. Such data often comes in the form of time series, and thus much of the course will use methods from time series analysis. One of the main problems in financial economics is to forecast certain properties of financial data in the future (expected returns, measures of risk, measures of correlation) and we will focus heavily on methods for forecasting. The emphasis on forecasting means we will place less emphasis than usual for an econometrics course on distribution theory for estimated parameters (e.g., the construction of standard errors), and place greater emphasis on methods for evaluating and comparing competing models.

Throughout the course, we will compliment the presentation of theoretical material with empirical examples and applications. Homework exercises will be based on addressing empirical problems using the statistical software package MATLAB.
Objectives of the course

Students completing this course will have seen and applied many of the latest models used in financial econometrics. They will understand some of the key features (both positive and negative) of these models. Further, students will be able to implement these models in statistical software packages, apply them to new data, and interpret the output from these models.

This course can be viewed as an applied econometrics course, with a focus on financial data, and as such may be useful for students interested in econometrics more generally. This course will also provide a basis for advanced study in econometrics and empirical finance, by building familiarity with financial data and with econometric methods for analyzing such data.

Syllabus

Topics to be covered in this course, subject to time constraints, include:

1. Review of statistics and econometrics (including linear regression and hypotheses tests)
2. Introduction to time series analysis (autocorrelations, AR, MA and ARMA models)
3. The efficient markets hypothesis and financial market predictability
4. Forecasting with ARMA models and model selection methods
5. Forecasting financial market volatility (ARCH/GARCH models and extensions)
6. Forecast evaluation and comparison (Mincer-Zarnowitz regressions, Diebold-Mariano tests, and extensions)
7. Sensitivity and robustness analyses
8. Multivariate volatility forecasting and correlations
9. High frequency financial data
10. Spurious regressions and cointegration
11. Value-at-Risk and Expected Shortfall forecasting
12. Realized volatility and realized correlation for forecasting
13. Univariate density forecasting (models, methods for evaluating forecasts)
14. Multivariate density forecasting and copulas
Useful text books

There is no text book for this course: my lecture notes are the only required reading.

Course requirements

Students are required to submit all pieces of assessment by their due dates and to sit for any examinations that are scheduled (see next section for details). Students are also expected to attend all lectures and to work consistently through the homeworks. (Leaving the homeworks until the last minute will reveal itself to be a bad strategy.) The exams will contain a mix of theoretical and empirical questions, and students will need to master both aspects of the course in order to do well.

Assessment

This course will be assessed using a mix of practical homework assignments and exams:

1. **Four homework assignments**, each worth 7.5%. These will require you to make progress learning Matlab and applying it to study financial data. See the separate hand-out for details on these homeworks.

 (a) 4pm, Friday February 7, 2020
 (b) 4pm, Friday February 21, 2020
 (c) 4pm, Friday April 3, 2020
 (d) 4pm, Friday April 17, 2020

 No late submissions will be accepted. Students have at least two weeks to complete each assignment, and if away on the due date then the homework must be submitted early.

2. **Mid-term examination**, worth 30%. The mid-term exam will be closed-book, no notes. You should bring a basic calculator (*not* a programmable calculator). The exam will contain a mix of theoretical questions and applied questions, and you will be expected to be able to interpret and discuss empirical output.

 • In class, Tuesday March 3, 2020.

3. **Final examination**, worth 40%. The final exam will be closed-book, no notes. You should bring a basic calculator (*not* a programmable calculator). The exam will contain a mix of theoretical questions and applied questions, where you will be expected to be able to interpret and discuss empirical output.

 • To be held in exam week (April 27 – May 2, 2020), with the exact date and time to be decided by the University. (It is currently scheduled for Monday, April 27, 9am-noon, but the date and time are not confirmed yet.)
Office hours and TA details

Teaching assistant: Peter Horvath
Email: peter.horvath@duke.edu

Office hours: Mondays, 5:05pm–6pm, in Social Sciences 111. Note: the first TA session will be Friday Jan 17 (5:05-6pm, Soc Sci 111), replacing the cancelled TA session on Jan 20. Regular Monday TA sessions will commence Jan 27th.

Peter can answer questions about the theoretical material that we cover in class, but he is primarily here to help students with Matlab. His first two office hours will be entirely spent giving an introduction to Matlab, including basic commands, loading data sets, etc. Students who have never used Matlab before should be sure to attend those two sessions.

My details are below:
Email: andrew.patton@duke.edu
Office hours: Mondays, 2-3pm, in Social Sciences 228-F.
This course examines the form and function of various financial markets and the manner in which financial institutions seek to use these markets to accomplish strategic corporate objectives. Our attention will focus on the behavior of major financial institutions, including commercial banks, and their role in the intermediation process as suppliers of funds to the money and capital markets.

1 Orientation. Module 1: Overview of financial analysis and financial forecasting. FMI Ch 1: Why Study CLO No. 1 Financial Markets & CLO No. 2 1 LECTURE 1: INTRODUCTION Institutions FMI Ch 2: Overview of Financial System? FMI Ch 3: What Do. ECON 623 Outline [.pdf]. ECON 624 International Economics 3 Credits. Offered in the Economics (Arts): Essential methods used in practical forecasting and modelling contexts: standard time series models for forecasting; non-stationary data; conditional variance forecasts; nowcasting macroeconomic quantities; density and probability forecasts; feasible forecast horizons; forecast evaluation and presentation. What is a financial forecast? Financial forecasting vs. budgeting. Three steps to creating your financial forecast. Step one: Gather your records. Step two: Decide how youâ€™ll make your forecast. A financial forecast tries to predict what your business will look like (financially) in the future. Pro forma statements are how you make those predictions somewhat concrete. When you do research about broader market trends, youâ€™re using research-based forecasting. You may look at how your industry has performed over the past ten years, investigate new technologies and consumer trends, or try to measure the progress of your competitors. You might look at how companies similar to yours have planned their own growth. Financial forecasting is the process of estimating or predicting how a business will perform in the future. The most common type of financial forecast is an income statement, however, in a complete financial model, all three financial statements are forecasts. When forecasting revenue for the telecommunications industry, we can predict the market size and use current market share and competitor analysis. When forecasting revenue for any service industries, we can estimate the headcount and use the income for customer trends. On the other hand, the quick and dirty approach to robust models outlines how you can model revenues in a much more straightforward way, with the benefit that the model will be more simple and easy to use (although less accurate and detailed).

Financial Forecasting, An has been added to your Cart. Add to Cart. Buy Now. Sold by Nova Markets and ships from Amazon Fulfillment. FREE Shipping. Details. The book includes thorough coverage of financial statement simulation models and clear, concise implementation instruction that gives finance professionals a step-by-step guide through the projection plan development process.